Fibaro RGBW Controller is a universal, 2-Wire compatible RGB light controller. Inclusion takes place with the input from the controller, which is connected to the LED RGBW signal, enables it to control LED RGBW lights, highlights and fans. Controlled devices may be powered by 12 or 24 VDC. In addition the device supports up to 14-5 VAC analogue inputs such as temperature sensors, humidity sensors, wind sensors, air quality sensors, light sensors etc. All IN and OUT terminals may be used in operation with analog sensors and potentiometers.

Although 2-Wire is quite a new technology, it has already become recognized and offers a strong standard, similar to 1-Wire and 2-Wire technology, guaranteeing their compatibility. This means that the system is open and may be expanded in the future. For more information on www.fibaro.com.

Fibaro generates a unique network ID structure after Fibaro System is switched on. The location of its individual components is automatically updated in real-time through wireless configuration signals received from devices operating on a "master" network.

II Device Applications
Fibaro RGBW Controller may control:
- 12 / 24V DC powered RGB strips
- 24 / 12V powered RGBW strips
- 12 / 24V powered LED lights, bulbs, tubes
- 12 / 24V powered led low output power fans

Additional features:
- 16 in sensors signal results, controlling characteristic time delays, and managing outputs accordingly.
- controlled by momentary or toggle switches.

III Installing the device
1. Before installation ensure the voltage supply is disconnected.
2. Connect Fibaro RGBW Controller according to wiring diagram.
3. Set the Fibaro RGBW Controller into learning mode (see Fibaro RGBW Controller control manual).
4. Specify controlled device - RGBW, RGB, IN/OUT (further described in pt. X), user defined in parameter 14. Operating mode is set during first configuration in Home Center 2 interface. Other configuration settings, e.g. light sensor, temperature sensor, two OUT devices i.e. LED strips or Halogen bulbs, as shown in fig. 4.
5. Connect Fibaro RGBW Controller to voltage supply.

IV 2-Wire network inclusion
Fibaro RGBW Controller may be included in 2-Wire network using a Button for automatic Inclusion into IN/OUT channels - see fig. 4. The device has an auto-identification function implemented and can be included only if the network is not fully operational. To connect Fibaro RGBW Controller to the 2-Wire network:
1. Set the Fibaro RGBW Controller into learning mode (see 2-Wire network controller operating manual).
2. Connect Fibaro RGBW Controller to the 2-Wire network in manual inclusion mode.
3. Connect Fibaro RGBW Controller to the 2-Wire network in manual inclusion mode.
4. Connect Fibaro RGBW Controller into IN/OUT channel.
5. Connect the Button or any switch connected to IN/OUT inputs.

V Z-Wave network exclusion
Excluding the Fibaro RGBW Controller from the Z-Wave network:
1. Connect Fibaro RGBW Controller to voltage supply.
2. Set the Z-Wave network main controller into learning mode (see Z-Wave network controller operating manual).
3. 3. Triple click the Button or any switch connected to IN/OUT inputs.

VI Resetting Fibaro RGBW Controller
Reset procedure clears the Fibaro RGBW Controller's memory, including Z-Wave network controller information, energy consumption data and 3-user-defined parameters.

VII Fibaro RGBW Controller operating modes
The device may be controlled by momentary or toggle switches. Fibaro RGBW Controller may serve as IN/OUT input module and operate in: 0-10 V sensor, 0-10 V PWM and 0-10 V analog sensor mode. Fibaro RGBW Controller offers fully configurable operating modes, it is described in pt. X, user defined in parameter 14.

1) RGBW - controlling RGB/RGBW blocks or Halogen lights. IV Channel is set during first configuration in Home Center 2 interface. Other configuration settings, e.g. light sensor, temperature sensor, two OUT devices i.e. LED strips or Halogen bulbs, as shown in fig. 4.
2) Additional features:
- Dimmer - controlling Halogen lamps, or inputs (I1-I4).
- Favourite colours section.
- 12 / 24V powered RGB strips.
- 24 / 12V powered RGBW strips.
- 12 / 24V powered LED lights, bulbs, tubes.
- 12 / 24V powered led low output power fans.
- 1-Wire/2-Wire compliant devices.
Fig. 8 - 0-10 V sensors wiring diagram

12/24VDC
GND
IN2
IN1
IN3
IN4
FIBARO RGBW CONTROLLER
G
B
B
W
G
B
B
W

Fig. 5 - Torsion description
12/24VDC
GND
IN2
IN1
IN3
IN4
RGBW FIBARO
FIBARO RGBW CONTROLLER
G
B
B
W
G
B
B
W

Fig. 6 - Connecting led lighting

XIII Advanced configuration

GENERAL:
1. ALL ON / ALL OFF function activation
Default setting: 1
- ALL OFF active, ALL OFF inactive
- ALL ON active, ALL OFF inactive
- 20% ALL active, ALL OFF active
Parameter size: 1 [byte]

2. Associations common class choice
Default setting: 0
- 0 - RGBW (4-channel) / GENERAL SETTING / MULTIPLE ON-OFF / START/STOP
- 1 - TEL / RADIO, COLOR-SETTING / SETSTAR-T, CHANGE / SET
- 2 - TEL / RADIO, RGBW, COLOR-SETTING / SETSTAR-TOP
- 3 - TEL / RADIO, RGBW, COLOR-SETTING / SETSTAR-STOP
Parameter size: 1 [byte]

3. Change saturation level from 0% to 69%
Parameter choice:
- Value 1: 10
- Value 2: 100
Parameter size: 2 [bytes]

4. Time for changing from start to end value
Default setting: 2 [sec]
- 0 - immediate change
- 1 - 20 - 120 [sec] (step value 10, 10 time between [sec])
- 1 - MODULE-related/parameter: 11[time to change value, relevant for RGBW mode]
Parameter size: 1 [byte]

5. Time between stops (relevant for MODE2)
Default setting: 10 [msec]
- 1 - 100 - immediate stop
- 2 - mode stops activity
Parameter size: 1 [byte]

6. Input output state change mode
Default setting 1 - 255
- 0 - MODE1-related/parameter: 6 [input/output state change]
Parameter size: 1 [byte]

7. Input output state change max
Default setting 1 - 255
- 0 - MODE1-related/parameter: 6 [input/output state change]
Parameter size: 1 [byte]

8. Analog sensor input - receive analog data
Parameter range: 0 - 1023
- 0 - 0 - 0 - 0
- 1 - 1 - 1 - 1
Parameter size: 4 [bytes]

9. STOP value (relevant for MODE2)
Default setting 1
- 1 - immediate stop
- 2 - short stop/one alarma
Parameter size: 1 [byte]

10. Change between stops (relevant for MODE2)
Default setting 10 [msec]
- 0 - 100 - immediate stop
- 1 - 100 - 400 [msec]
Parameter size: 1 [byte]

11. Adapter wiring diagram
IN1 - 0V, IN2 - GND, IN3 - 5V, IN4 - 12V
http://manuals.fibaro.com/RGBW-control/Ar/br.pdf

TIPS FOR ARRANGING THE ANTENNA:

1. Locate the antenna as far from metallic elements as possible (connecting wires, bracket rings, etc.) in order to prevent interference.
2. Metal surfaces in the direct vicinity of the antenna (e.g. flush mounted metal boxes, metal door frames) may impede signal reception.

DFDR/PDR WARNING:
Do not cut or shorten the antenna - it's length is perfectly matched to the band in which the system operates.

XIX. GUARANTEE

1. FIBARO GROUP S.A. with its registered office in Poznań, ul. Marszalkowska 12, 61-789 Poznań, entered into the Register of Entrepreneurs maintained by Local Court in Poznań, X Commercial Division under KRS number: 5000835522 (NIP 8214000977, REGON: 301595664); all information on the device and its components available in the operating manual and in technical documentation as such elements have operational life.

2. The Manufacturer shall not exclude, limit or suspend the Guarantee in case of defects resulting from: the fact that the Customer used the device incorrectly or majeure, unforeseen accidents, theft, water damage, battery spill, weather conditions, sunlight, sand, high or low temperatures, as well as faults caused by the Manufacturer.

3. The Guarantee shall be null and void if the Customer:
- damages caused by operating faulty Device or accessories;
- damages caused by the Customer’s failure to provide maintenance and servicing activities defined in the operating manual;
- damages resulting from the use of spurious spare parts or components not recommended by the Manufacturer, required for repairing or introducing new Device or accessories;
- damages caused by faulty electrical installation of the Customer, including the use of incorrect equipment;
- damages caused by Customer’s failure to provide maintenance and servicing activities defined in the operating manual;
- damages caused by faulty electrical installation of the Customer, including the use of incorrect equipment;
- damages caused by faulty electrical installation of the Customer, including the use of incorrect equipment;
- damages caused by faulty electrical installation of the Customer, including the use of incorrect equipment;
- damages caused by faulty electrical installation of the Customer, including the use of incorrect equipment;
- damages caused by faulty electrical installation of the Customer, including the use of incorrect equipment;