X. EARTHQUAKE DETECTOR MODE

The Fibaro Motion Sensor can be configured to work in a simple earthquake detector, by setting the Parameter 24 value to 4. Reports of amplitude, with scale of the vibrations (dimensions) will be sent at the time interval of 1 second. For instance, if vibrations are lower (1-2 mm), this will be sent immediately, after vibrations have been detected. The minimal value of vibrations, resulting in report being sent, can be defined in Parameter 20. Once the vibrations cease, reports will stop being sent. The Stronger the sensor is configured to react to vibrations, which will result in sending the battery life.

XI. SENSOR’S ORIENTATION IN SPACE

The Fibaro Motion Sensor is equipped with a 3-axis sensor including an accelerometer and a magnetic field sensor, allowing the sensor to be informed on the Sensor's orientation in space.

XII. BATTERY USAGE TIPS

The Fibaro Motion Sensor's battery life is approximately 2 years or battery default settings. The current battery level is displayed in the Home Center Lite or mobile application. Once the battery level drops below 80%, the sensor will stop operating. Before replacing the battery, remove the sensor from the network and set it to exclusion mode. To replace the battery, follow these steps:

1. Press and hold the B-button for 0.5 seconds until yellow LED illuminates.
2. Release the B-button.
3. Press the B-button again until white LED illuminates.
4. Again, press the B-button briefly.
5. Wait for 2 seconds, until white LED turns violet.

VI. INSTALLATION NOTES

Fibaro Motion Sensor cannot be pointed at any source of heat (e.g. radiators, inoffensive, daylight, etc.) or at any source of light (light, pet, dog, etc.). The Fibaro Motion Sensor can be configured to work as a simple earthquake detector, by setting the Parameter 24 value to 4. Reports of amplitude, with scale of the vibrations (dimensions) will be sent at the time interval of 1 second. For instance, if vibrations are lower (1-2 mm), this will be sent immediately, after vibrations have been detected. The minimal value of vibrations, resulting in report being sent, can be defined in Parameter 20. Once the vibrations cease, reports will stop being sent. The Stronger the sensor is configured to react to vibrations, which will result in sending the battery life.

The Fibaro Motion Sensor has a built-in accelerometer. When the value of parameter 24 is set to 3, the Fibaro Motion sensor will be configured to work as a simple earthquake detector, by setting the Parameter 24 value to 4. Reports of amplitude, with scale of the vibrations (dimensions) will be sent at the time interval of 1 second. For instance, if vibrations are lower (1-2 mm), this will be sent immediately, after vibrations have been detected. The minimal value of vibrations, resulting in report being sent, can be defined in Parameter 20. Once the vibrations cease, reports will stop being sent. The Stronger the sensor is configured to react to vibrations, which will result in sending the battery life.

The Fibaro Motion Sensor has been designed to be installed quickly and easily on any building structure.

1. Press and hold the B-button for 0.5 seconds until yellow LED illuminates.
2. Release the B-button.
3. Press the B-button again until white LED illuminates.
4. Again, press the B-button briefly.
5. Wait for 2 seconds, until white LED turns violet.

VI. INSTALLATION NOTES

Fibaro Motion Sensor cannot be pointed at any source of heat (e.g. radiators, lamps, cookers, etc.) or at any source of light (light, pet, dog, etc.). The Fibaro Motion Sensor can be configured to work as a simple earthquake detector, by setting the Parameter 24 value to 4. Reports of amplitude, with scale of the vibrations (dimensions) will be sent at the time interval of 1 second. For instance, if vibrations are lower (1-2 mm), this will be sent immediately, after vibrations have been detected. The minimal value of vibrations, resulting in report being sent, can be defined in Parameter 20. Once the vibrations cease, reports will stop being sent. The Stronger the sensor is configured to react to vibrations, which will result in sending the battery life.

The Fibaro Motion Sensor has a built-in accelerometer. When the value of parameter 24 is set to 3, the Fibaro Motion sensor will be configured to work as a simple earthquake detector, by setting the Parameter 24 value to 4. Reports of amplitude, with scale of the vibrations (dimensions) will be sent at the time interval of 1 second. For instance, if vibrations are lower (1-2 mm), this will be sent immediately, after vibrations have been detected. The minimal value of vibrations, resulting in report being sent, can be defined in Parameter 20. Once the vibrations cease, reports will stop being sent. The Stronger the sensor is configured to react to vibrations, which will result in sending the battery life.

The Fibaro Motion Sensor has been designed to be installed quickly and easily on any building structure.

1. Press and hold the B-button for 0.5 seconds until yellow LED illuminates.
2. Release the B-button.
3. Press the B-button again until white LED illuminates.
4. Again, press the B-button briefly.
5. Wait for 2 seconds, until white LED turns violet.

VI. INSTALLATION NOTES

Fibaro Motion Sensor cannot be pointed at any source of heat (e.g. radiators, lamps, cookers, etc.) or at any source of light (light, pet, dog, etc.). The Fibaro Motion Sensor can be configured to work as a simple earthquake detector, by setting the Parameter 24 value to 4. Reports of amplitude, with scale of the vibrations (dimensions) will be sent at the time interval of 1 second. For instance, if vibrations are lower (1-2 mm), this will be sent immediately, after vibrations have been detected. The minimal value of vibrations, resulting in report being sent, can be defined in Parameter 20. Once the vibrations cease, reports will stop being sent. The Stronger the sensor is configured to react to vibrations, which will result in sending the battery life.

The Fibaro Motion Sensor has a built-in accelerometer. When the value of parameter 24 is set to 3, the Fibaro Motion sensor will be configured to work as a simple earthquake detector, by setting the Parameter 24 value to 4. Reports of amplitude, with scale of the vibrations (dimensions) will be sent at the time interval of 1 second. For instance, if vibrations are lower (1-2 mm), this will be sent immediately, after vibrations have been detected. The minimal value of vibrations, resulting in report being sent, can be defined in Parameter 20. Once the vibrations cease, reports will stop being sent. The Stronger the sensor is configured to react to vibrations, which will result in sending the battery life.

The Fibaro Motion Sensor has been designed to be installed quickly and easily on any building structure.

1. Press and hold the B-button for 0.5 seconds until yellow LED illuminates.
2. Release the B-button.
3. Press the B-button again until white LED illuminates.
8. PIR SENSOR OPERATING MODE
The parameter determines the behaviour of tamper and how it will be alarmed in case tamper is detected. Reports to the association groups are sent using Fibar Command Class after the time period set in parameter 22. Sensor’s orientation in space is recalculated only after motion and one short blink each time the motion is detected again.

13. LED Indicating TAMPER Alarm
Indicating mode resembles a police car (white, red and blue). The indicator LED glows with 100% brightness. Small LED is turned on.

14. LED SIGNALING MODE
The parameter determines the LED behaviour in the case of tamper alarm after motion has been detected. Multiple flashes can be selected. The LED glows in white for 10 seconds. In case of tamper alarm extending the glowing by next 10 seconds. LED glows in white for 10 seconds. 10 to 18 according to the tamper alarm extension.

15. TEMPER SENSITIVITY
The parameter determines the behaviour of tamper in the case of tamper in the case of tamper alarm after motion has been detected. Multiple flashes can be selected. The LED glows in white for 10 seconds. 10 to 18 according to the tamper alarm extension.

16. LED REPORTS OFFSET
The LED reports offset parameter determines the time delay between the moment of tamper alarm after motion has been detected and the moment when the LED is turned on. This time delay is calculated based on the time period set in parameter 16. If the LED is turned off immediately after motion has been detected the LED is not turned on.

17. ILLUMINATION REPORT THRESHOLD
The parameter determines the change in level of lighting sensitivity. Higher values will provide more sensitive detection of illumination changes. Reports to the association groups are sent using Fibar Command Class after the time period set in parameter 22.

18. ILLUMINATION REPORT OFFSET
The parameter determines the time delay between the moment of illumination change and the moment when the LED is turned on. This time delay is calculated based on the time period set in parameter 16. If the LED is turned off immediately after motion has been detected the LED is not turned on.

19. LED BRIGHTNESS
The parameter determines the brightness of LED when indicating motion. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

20. LED BRIGHTNESS LEVEL BELOW WHICH LED BRIGHTNESS IS SET TO 1%
The parameter determines the change in LED brightness when the ambient light (see parameter 82 and 83) is below a certain level. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

21. LED BRIGHTNESS LEVEL ABOVE WHICH LED BRIGHTNESS IS SET TO 1%
The parameter determines the change in LED brightness when the ambient light (see parameter 82 and 83) is above a certain level. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

22. MOTION SENSORS BLIND TIME (SENSITIVITY)
This parameter determines the period of time during which the PIR sensor is “blind” (insensitive) to vibrations force. Reports are sent even if there are no changes in the light intensity. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

23. MOTION SENSORS SENSITIVITY
The parameter determines the degree of sensitivity to vibrations force. Reports are sent even if there are no changes in the light intensity. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

24. MOTION SENSORS “WIND” TIME
During this period after the PIR sensor is turned off, the LED will turn on, but it will turn off again after this period. The longer the battery life. If a sensor is not required to detect motion quickly, this time period may be shortened for energy saving purposes.

25. MOTION SENSORS “WIND” TIME
During this period after the PIR sensor is turned off, the LED will turn on, but it will turn off again after this period. The longer the battery life. If a sensor is not required to detect motion quickly, this time period may be shortened for energy saving purposes.

26. ILLUMINATION MEASURING
The parameter determines the period of time during which the PIR sensor is turned on and its sensitivity is set to maximum. If the LED is turned off immediately after motion has been detected the LED is not turned on.

27. LED BRIGHTNESS LEVEL ABOVE WHICH LED BRIGHTNESS IS SET TO 1%
The parameter determines the change in LED brightness when the ambient light (see parameter 82 and 83) is above a certain level. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

28. LED BRIGHTNESS LEVEL BELOW WHICH LED BRIGHTNESS IS SET TO 1%
The parameter determines the change in LED brightness when the ambient light (see parameter 82 and 83) is below a certain level. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

29. LED BRIGHTNESS
The parameter determines the brightness of LED when indicating motion. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

30. LED BRIGHTNESS LEVEL BELOW WHICH LED BRIGHTNESS IS SET TO 1%
The parameter determines the change in LED brightness when the ambient light (see parameter 82 and 83) is below a certain level. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

31. LED BRIGHTNESS LEVEL ABOVE WHICH LED BRIGHTNESS IS SET TO 1%
The parameter determines the change in LED brightness when the ambient light (see parameter 82 and 83) is above a certain level. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

32. MOTION SENSORS SENSITIVITY
The parameter determines the degree of sensitivity to vibrations force. Reports are sent even if there are no changes in the light intensity. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

33. MOTION SENSORS BLIND TIME (SENSITIVITY)
This parameter determines the period of time during which the PIR sensor is “blind” (insensitive) to vibrations force. Reports are sent even if there are no changes in the light intensity. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

34. MOTION SENSORS SENSITIVITY
The parameter determines the degree of sensitivity to vibrations force. Reports are sent even if there are no changes in the light intensity. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

35. MOTION SENSORS BLIND TIME (SENSITIVITY)
This parameter determines the period of time during which the PIR sensor is “blind” (insensitive) to vibrations force. Reports are sent even if there are no changes in the light intensity. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

36. ILLUMINATION MEASURING
The parameter determines the period of time during which the PIR sensor is turned on and its sensitivity is set to maximum. If the LED is turned off immediately after motion has been detected the LED is not turned on.

37. LED BRIGHTNESS
The parameter determines the brightness of LED when indicating motion. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

38. LED BRIGHTNESS LEVEL BELOW WHICH LED BRIGHTNESS IS SET TO 1%
The parameter determines the change in LED brightness when the ambient light (see parameter 82 and 83) is below a certain level. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

39. LED BRIGHTNESS LEVEL ABOVE WHICH LED BRIGHTNESS IS SET TO 1%
The parameter determines the change in LED brightness when the ambient light (see parameter 82 and 83) is above a certain level. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

40. ILLUMINATION REPORT THRESHOLD
The parameter determines the change in level of lighting sensitivity. Higher values will provide more sensitive detection of illumination changes. Reports to the association groups are sent using Fibar Command Class after the time period set in parameter 22.

41. ILLUMINATION REPORT OFFSET
The parameter determines the time delay between the moment of illumination change and the moment when the LED is turned on. This time delay is calculated based on the time period set in parameter 16. If the LED is turned off immediately after motion has been detected the LED is not turned on.

42. ILLUMINATION REPORTS INTERNAL
The parameter determines the behaviour of tamper in the case of tamper alarm after motion has been detected. Multiple flashes can be selected. The LED glows in white for 10 seconds. 10 to 18 according to the tamper alarm extension.

43. NIGHT / DAY
The parameter determines the changes in forces acting on the Fibaro Motion Sensor in the case of tamper alarm after motion has been detected. Multiple flashes can be selected. The LED glows in white for 10 seconds. 10 to 18 according to the tamper alarm extension.

44. LED SENDING MODE
The parameter determines the behaviour of tamper in the case of tamper alarm after motion has been detected. Multiple flashes can be selected. The LED glows in white for 10 seconds. 10 to 18 according to the tamper alarm extension.

45. ILLUMINATION THRESHOLD
The parameter determines the change in level of lighting sensitivity. Higher values will provide more sensitive detection of illumination changes. Reports to the association groups are sent using Fibar Command Class after the time period set in parameter 22.

46. ILLUMINATION REPORT THRESHOLD
The parameter determines the change in level of lighting sensitivity. Higher values will provide more sensitive detection of illumination changes. Reports to the association groups are sent using Fibar Command Class after the time period set in parameter 22.

47. MOTION SENSORS “WIND” TIME
During this period after the PIR sensor is turned off, the LED will turn on, but it will turn off again after this period. The longer the battery life. If a sensor is not required to detect motion quickly, this time period may be shortened for energy saving purposes.

48. MOTION SENSORS SENSITIVITY
The parameter determines the degree of sensitivity to vibrations force. Reports are sent even if there are no changes in the light intensity. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.

49. MOTION SENSORS BLIND TIME (SENSITIVITY)
This parameter determines the period of time during which the PIR sensor is “blind” (insensitive) to vibrations force. Reports are sent even if there are no changes in the light intensity. The parameter range is 0 - 255. The lower the value, the more sensitive the PIR sensor.